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Abstract

Background: The Australian paralysis tick (Ixodes holocyclus) is of significant medical and veterinary importance as a
cause of dermatological and neurological disease, yet there is currently limited information about the bacterial
communities harboured by these ticks and the risk of infectious disease transmission to humans and domestic
animals. Ongoing controversy about the presence of Borrelia burgdorferi sensu lato (the aetiological agent of Lyme
disease) in Australia increases the need to accurately identify and characterise bacteria harboured by I. holocyclus ticks.

Methods: Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial 16S rRNA genes
present in DNA samples from I. holocyclus and I. ricinus ticks, collected in Australia and Germany respectively. The 16S
amplicons were purified, sequenced on the Ion Torrent platform, and analysed in USEARCH, QIIME, and BLAST to assign
genus and species-level taxonomy. Initial analysis of I. holocyclus and I. ricinus identified that > 95 % of the 16S sequences
recovered belonged to the tick intracellular endosymbiont “Candidatus Midichloria mitochondrii” (CMM). A CMM-specific
blocking primer was designed that decreased CMM sequences by approximately 96 % in both tick species and
significantly increased the total detectable bacterial diversity, allowing identification of medically important bacterial
pathogens that were previously masked by CMM.

Results: Borrelia burgdorferi sensu lato was identified in German I. ricinus, but not in Australian I. holocyclus ticks.
However, bacteria of medical significance were detected in I. holocyclus ticks, including a Borrelia relapsing fever
group sp., Bartonella henselae, novel “Candidatus Neoehrlichia” spp., Clostridium histolyticum, Rickettsia spp., and
Leptospira inadai.

Conclusions: Abundant bacterial endosymbionts, such as CMM, limit the effectiveness of next-generation 16S bacterial
community profiling in arthropods by masking less abundant bacteria, including pathogens. Specific blocking primers
that inhibit endosymbiont 16S amplification during PCR are an effective way of reducing this limitation. Here,
this strategy provided the first evidence of a relapsing fever Borrelia sp. and of novel “Candidatus Neoehrlichia”
spp. in Australia. Our results raise new questions about tick-borne pathogens in I. holocyclus ticks.
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Background
Ticks are the second most important vector of patho-
gens to humans after mosquitoes and the chief cause of
vector-borne diseases in domestic animals and wildlife
[1–3]. Ticks also vector the greatest diversity of
pathogenic microorganisms of any haematophagous
arthropod, including members of the bacterial genera
Anaplasma [4], Bartonella [5], Borrelia [6], Ehrlichia
[7], Francisella [8], Rickettsia [9], and “Candidatus
Neoehrlichia” [10]. Furthermore, bacterial co-infections
in ticks are common and provide diagnostic and thera-
peutic challenges for medical and veterinary practitioners
[11–13]. In Europe, North America, and Australia the
incidence of tick-borne diseases is rising due to a com-
bination of factors including perturbation in climate,
increasing populations and movement of humans and
domestic animals, and increased human encroachment
into tick habitats [14].
In Australia there is a long-standing controversy con-

cerning the presence of Lyme disease and its aetiological
agents, Borrelia burgdorferi sensu lato. First reported in
the 1980s [15, 16], intensive efforts to determine the
aetiological agent of Australian “Lyme-like” illness found
no evidence for B. burgdorferi sensu lato in ticks or wild-
life [17, 18], yet numerous victims of tick bites continue
to present with Lyme-like symptoms in Australia [19].
Thus there is a pressing need to apply contemporary
next-generation sequencing (NGS) techniques to better
understand bacterial pathogens harboured in Australian
ticks.
In Australia I. holocyclus is the most important tick

species from both a medical and veterinary perspective
[20, 21]. Its enzootic range is limited to a narrow strip
along Australia’s eastern seaboard that extends several
thousand kilometres from Cape York to eastern Victoria,
and includes most of Australia’s most densely populated
regions [22]. Ixodes holocyclus is commonly found on
domestic animals in which it causes life-threatening par-
alysis. Ixodes holocyclus is also the most common tick
found on people in its range and impacts human health
by causing weakness, paralysis, allergic reactions, and is
a vector for the spotted fever pathogens Rickettsia
australis and R. honei [23].
Together with known vector-borne pathogens, ticks

also harbour closely related endosymbiotic bacteria such
as Coxiella spp. [24–26], Francisella spp. [27–29],
Wolbachia spp. [30, 31], Rickettsia spp. [32–35], and the
recently discovered “Candidatus Midichloria mitochon-
drii” (CMM) [36–39]. These bacterial endosymbionts
often dominate the microbial population within their
arthropod hosts and can affect the transmission dynam-
ics of pathogenic species [40–42].
CMM is an intracellular endosymbiont that was first

discovered in the European sheep tick Ixodes ricinus
[36] but has since been detected in other ticks including
I. holocyclus [37, 43–47], as well as tabanid flies [48],
bed bugs [49], and mites [50]. In ticks, CMM resides in
high numbers in female reproductive tissues and is
transmitted to all offspring where it infects 100 % of
larvae, nymphs, and females [36, 51]. Male I. holocyclus
ticks also appear to inherit and harbour CMM, however,
I. ricinus males fail to establish stable CMM populations
[36, 38, 51]. In addition to this, CMM is found in I. rici-
nus salivary glands from where it is introduced during
feeding to vertebrate hosts, including humans [52, 53].
However, the consequences of CMM infection in verte-
brate hosts, if any, are unknown [52].
Next-generation sequencing and bioinformatics ad-

vances have greatly increased our ability to accurately
identify trace amounts of DNA in highly heterogeneous
samples, making them excellent tools for molecular epi-
demiological studies of pathogens that may be present in
low abundance. In particular, the application of 16S
rRNA gene (hereafter referred to as 16S) community
profiling has been particularly successful for characteris-
ing bacterial assemblages from a wide variety of sources,
including ticks [30, 54–62]. With this methodology, a
short region (100-500 bp) of the 16S gene is amplified
using PCR primers that bind to orthologous regions ei-
ther end of a hyper-variable region of the gene. Because
the primers bind to orthologous regions of the 16S gene
numerous bacterial taxa within a heterogeneous sample
can be targeted simultaneously, and the hyper-variable
region proximal to the primers permits taxonomic dis-
crimination of those taxa [63, 64].
A limitation of 16S community profiling in ticks is that

a high proportion of sequences generated during PCR
will belong to bacterial endosymbionts [40]. These over-
abundant endosymbiont 16S sequences can mask the
presence of less abundant bacterial 16S sequences
including pathogens, resulting in biased results and a de-
creased detected bacterial diversity. This limitation can
be overcome to some extent by deeper sequencing to in-
crease detection of low abundant sequences. However,
this approach fails to address the source of the problem
and is costly, making it difficult to study a large number
of samples. In addition, various factors such as biases in
PCR amplification efficiency and inter-specific variation
of the 16S copy number are known to skew the mea-
sured proportion of NGS reads, and limits the use of
sequence abundance to infer actual bacterial abundance
in the original sample [65, 66].
As part of an ongoing study into tick-borne diseases in

Australia, we developed a primer that inhibits amplifica-
tion of CMM 16S sequences, enabling us to identify
other less abundant bacteria in I. holocyclus and I. rici-
nus. This approach has provided insights into the bacter-
ial microbiome of I. holocyclus and is readily applicable
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to other arthropod vectors of plant and animal diseases
where overabundant species prove problematic to the
identification of important taxa.

Methods
Sample collection
A total of 196 individual specimens of I. holocyclus, were
collected from mammalian (n = 85) and avian (n = 2)
hosts, and from the environment (n = 109) in various lo-
cations in New South Wales, Australia, between 2004
and 2014 (Table 1). All host-seeking I. holocyclus ticks
were collected by flagging, using standard techniques
[67], and either preserved frozen, stored in 70 % ethanol,
or used immediately. In addition, 20 nymph and ten fe-
male I. ricinus ticks were collected by flagging in subur-
ban parks in the cities of Freising and Leipzig, Germany,
in 2013, and were immediately placed in 70 % ethanol
and shipped to Murdoch University. All ticks were iden-
tified morphologically using standard keys [68, 69].

Ethics statement
This research complies with the Australian Code for the
Responsible Conduct of Research, 2007 and the Australian
Code for the Care and Use of Animals for Scientific
Purposes, 2013. Removal of ticks from animal hosts was
approved by the Murdoch University Animal Ethics
Committee; collection from domestic animals (n = 35)
and wildlife species (n = 26) was opportunistic, from indi-
viduals that were presented to veterinarians, or were dead
as a result of unrelated accident or injury. Ticks (n = 26)
were removed from humans by the person themselves or
by medical professionals during outpatient treatment.

DNA extraction
Total genomic DNA from individual ticks was ex-
tracted using the Qiagen DNeasy Blood and Tissue Kit
Table 1 Ixodes holocyclus and I. ricinus ticks collected from
different hosts and the environment

Tick Instar or Sex Number of
ticks

Hosts or Questing (number of ticks)

Ixodes holocyclus 196

Nymph 15 Questing (15)

Male 41 Questing (41)

Female 140 Bos taurus (4), Canis familiaris (26),
Corvus coronoides (1), Cracticus tibicen (1),
Echidna (Family: Tachyglossidae) (1),
Felis catus (5), Homo sapiens (26),
Macropus spp. (9), Trichosurus vulpecula (14),
Questing (53).

Ixodes ricinus 30

Nymph 20 Questing (20)

Female 10 Questing (10)
(Qiagen, Germany) following the manufacturer’s recom-
mendations (Qiagen Supplementary Protocol: Purification
of total DNA from insects). Before extraction, individual
ticks were surface sterilised in 10 % sodium hypochlorite,
washed in 70 % ethanol and DNA-free PBS, frozen in
liquid nitrogen for 1 min, and homogenised with 5 mm
steel beads in a Tissue Lyser LT (Qiagen, Germany) for
1 min at 40 Hz. DNA-free equipment and tubes were used
for each step and equipment was decontaminated between
samples with DNAaway (Life Technologies, USA). Extrac-
tion reagent blanks were performed in parallel with all
DNA extractions in order to determine background bac-
terial populations (one extraction reagent blank for every
23 samples). To prevent potential cross-contamination by
known I. ricinus pathogens, DNA extractions from these
ticks were performed in a separate laboratory to I. holocy-
clus DNA extractions.

Blocking primer design
In pilot 16S community profiling experiments, over 95 %
of the sequences generated from each sample, from
both I. holocyclus and I. ricinus ticks, belonged to CMM
regardless of the sequencing depth, PCR primers, or
sequencing platform used (data not shown). To inhibit
amplification of these overabundant sequences during
PCR, we developed a CMM-specific blocking primer
(MidBlocker) [70] to be used in conjunction with the
16S universal primers 27F-Y (Fig. 1) and 338R (5’-TGC
TGCCTCCCGTAGGAGT-3’) that amplify the V1-V2
16S region [71]. The MidBlocker primer was designed
from an alignment of 107 partial 16S sequences includ-
ing known tick-borne pathogens and endosymbionts,
ubiquitous environmental bacteria, and CMM (Fig. 1).
The 5’ end of the MidBlocker primer has a 7 bp overlap
with the 3’ end of the 27F-Y primer, extends 15 bp
downstream of the 27F-Y primer-binding site, and ter-
minates polymerase elongation due to a C3 spacer at
the 3’ end of the primer (Fig. 1). In silico analysis (not
shown) suggests that the MidBlocker primer is specific
to CMM and will not modulate the binding of the
27F-Y primer to other closely related Rickettsiaceae
and Anaplasmataceae.

Validation of the MidBlocker primer
Total DNA from host-seeking female I. holocyclus (n = 10)
and I. ricinus (n = 10) were amplified by qPCR using the
27F-Y and 338R primers with and without 10 μM of
MidBlocker primer. Different concentrations (2-14 μM)
of the MidBlocker primer were trialled in pilot experi-
ments on a subset of samples (data not shown). PCR
conditions, fusion-primer architecture, semiconductor
sequencing, and sequence analysis were the same as de-
scribed below. Nonparametric Mann-Whitney U-tests
were performed in Quantitative Insights Into Microbial



Name (NCBI accession) Sequence (5’-3’)
27F-Y Primer (This study) AGAGTTTGATCCTGGCTYAG

MidBlocker Primer (This study) GGCTYAGAGTGAACGCTGGCGG/C3/
Candidatus Midichloria mitochondrii (CP002130) AGAGTTTGATCCTGGCTCAGAGTGAACGCTGGCGG

Borrelia burgdorferi (B31_30245) AGAGTTTGATCCTGGCTTAGAACTAACGCTGGCAG
Borrelia afzelii (CP009212) AGAGTTTGATCCTGGCTTAGAACTAACGCTGGCAG

Borrelia duttonii (AF107364) AGAGTTTGATCCTGGCTTAGAACTAACGCTGGCAG
Rickettsia rickettsia (CP000766) AGAGTTTGATCCTGGCTCAGAACGAACGCTATCGG
Bartonella henselae (AJ223780) AGAGTTTGATCATGGCTCAGAACGAACGCTGGCGG

Ehrlichia chaffeensis (CP007480)
Anaplasma phagocytophilum (CP006618)

AGAGTTTGATCCTGGCTCAGAACGAACGCTGGCGG
AGAGTTTGATCCTGGCTCAGAACGAACGCTGGCGG

Fig. 1 Alignment of partial 16S rDNA sequences and the 27F-Y and MidBlocker primers. Alignment includes partial 16S sequences of seven tick-borne
bacterial pathogens and “Candidatus M. mitochondrii” with the 27F-Y and MidBlocker primers showing mismatches that allow specific blocking of “Can-
didatus M. mitochondrii”
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Ecology (QIIME) [72] to determine the significance of
differences in bacterial diversity between samples amp-
lified with and without MidBlocker; significance was set
at p < 0.05 (Mann-Whitney U-Test).

16S community profiling qPCR
The primers 27F-Y and 338R amplified the 16S V1-2
hyper-variable regions (250-320 bp) [73] in I. holocyclus
and I. ricinus DNA samples. 27F-Y and 388R primers
also incorporated a six to eight base pair multiplex iden-
tifier (MID) sequence together with Ion Torrent sequen-
cing adapters A and P1 (Life Technologies, USA). Each
sample was amplified with primers containing a unique
combination of forward and reverse MID sequences to
allow multiplex sequencing and discrimination of se-
quences to samples in downstream analysis. All commu-
nity profiling qPCRs were carried out in duplicate in
25 μl reactions containing 1 × PCR buffer (5 prime,
Germany), 2 mM MgCl2 (5 Prime, Germany), 0.25 mM
dNTPs (Fisher Biotech, Australia), 0.01 mg BSA (Fisher
Biotech, Australia), 0.4 μM of each 27F-Y and 338R pri-
mer, 10 μM of MidBlocker, 0.12 × SYBR Green (Life
Technologies, USA), 1 U of Perfect Taq Polymerase
(5 Prime, Germany), 1 × ROX dye (Life Technologies,
USA), and 2 μl of DNA (1-100 ng/μl). No-template con-
trol reactions and extraction reagent blank controls were
included in every qPCR run and were incorporated in the
sequencing libraries. All PCR amplifications were per-
formed on a Step-One real-time qPCR machine (Applied
Biosystems, USA) with the following thermal conditions:
initial denaturation at 95 °C for 5 min followed by 35 cycles
of denaturation at 95 °C (30s), annealing at 62 °C (30s),
and extension at 72 °C (45 s). Thermocycling was followed
by a melt curve and final extension at 72 °C for 10 min.

Library preparation and NGS
16S amplicons from all samples and controls were
pooled into one of four sequencing libraries in equimo-
lar amounts. Amplicon libraries were then purified twice
using 1.2 volumes of Agencourt Ampure XP beads
(Agilent Technologies, USA) and quantified by qPCR
using a known concentration of a serially diluted 152 bp
synthetic oligonucleotide as a standard. qPCR reactions
contained 1X Power Syber Green mastermix (Life
Technologies, USA), 0.4 μM Ion Torrent primers A
and P1, and 2 μl DNA template, and were run with the
following thermal conditions: initial denaturation at 95 °C
for 5 min followed by 30 cycles of denaturation at 95 °C
(30 s), annealing and extension at 60 °C (45 s). Templating
emulsion PCR and enrichment were performed ac-
cording to the manufacturer’s recommendations on
the One-Touch 2 and One-Touch ES instruments (Life
Technologies, USA). Sequencing was performed on an Ion
Torrent PGM (Life Technologies, USA) using 400 bp
chemistry and 316-V2 semiconductor chips, following the
manufacturer’s recommendations.

Sequence processing and analysis
Sequences were first processed in Geneious 8.0.4 [74]
by retaining only reads with perfect 27F-Y and 338R
primers and MID sequences (no mismatches allowed).
Sequences were then de-multiplexed into individual
samples based on their unique combination MID se-
quences. Primer sequences and distal bases were
trimmed from each read, and reads shorter than the
minimum reported length of the amplicon (<250 bp)
were discarded. Remaining reads were quality filtered
using USEARCH [75], allowing only reads with a < 1 %
error rate to remain and singletons were removed on a
per-sample basis. In order to identify bacterial genera
present in samples operational taxonomic units (OTUs)
were selected by clustering sequences at 97 % similarity
with the UPARSE algorithm [76]. OTUs were checked
against the ChimeraSlayer Gold reference database with
the UCHIME algorithm [77] to ensure OTUs were not
the result of chimeric reads. Genus level taxonomy was
assigned to OTUs against the GreenGenes 16S database
(August 2013 release) [78] in QIIME 1.8.0 [72] using
the UCLUST algorithm [75] with default parameters.
Only OTUs assigned to the genus level were used for
further analysis. Bacterial genera that were identified in ex-
traction reagent blanks and no-template controls were
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removed from the dataset to eliminate background
bacterial sequences.
16S sequences from genera that contained known tick-

borne pathogens, known tick endosymbionts, or medically
important bacteria that have not previously been asso-
ciated with ticks, were compared against the NCBI
GenBank Nucleotide database using BLAST [79] in an at-
tempt to resolve species level taxonomy. Sequences were
only assigned to a species if the query sequence matched
only one species-specific reference sequence with a pair-
wise identity match ≥ 99 % with ≥ 99 % query coverage.
Sequences from the genera Borrelia, and “Candidatus

Neoehrlichia” in this study were aligned with 16S se-
quences from known members retrieved from GenBank
using the Geneious alignment tool [74] and refined with
MUSCLE [80]. Alignments were trimmed to match the
length sequences obtained in this study. Borrelia align-
ment contained 27 members with 313 bp sequences
including gaps and the “Candidatus Neoehrlichia” align-
ment contained 43 members with 309 bp sequences in-
cluding gaps. Neighbour-joining phylogenetic trees were
constructed from these alignments in Geneious [74] using
the Tamura-Nei genetic distance model and resampling
1000 bootstrap replicates. “Borrelia” and “Candidatus
Neoehrlichia” sequences from “I. holocyclus” ticks used for
phylogenetic reconstructions were deposited in GenBank
(accessions KT203914-6).

Results
Validation of blocking primer
Comparison of unique sequences recovered from PCR
amplification with or without the MidBlocker primer re-
vealed 46,698 vs. 14,154 sequences for I. holocyclus and
30,689 vs. 12,723 sequences for I. ricinus, respectively.
Ixodes holocyclus and I. ricinus samples amplified with-
out the MidBlocker primer contained a total of 98.2 %
and 99.6 % CMM sequences respectively, while amplifi-
cation with the MidBlocker primer decreased the
number of CMM sequences to a total of only 2.3 % and
3.6 % of the reads respectively. Six of ten I. holocyclus
samples and four of ten I. ricinus samples still contained
CMM >sequences after amplification with the Mid-
Blocker primer, however, these sequences comprised
< 4 % of sequences in each of these samples.
Consequent to the blocking step, all samples had a sig-

nificantly higher taxonomic diversity when amplified with
the MidBlocker primer than when amplified without the
MidBlocker primer (p < 0.05; Mann-Whitney U-Test).
Amplification without the MidBlocker primer resulted in
the detection of 32 and 14 bacterial genera in I. holocyclus
and I. ricinus samples respectively, while inhibition of
CMM 16S sequences resulted in the detection of 103 and
89 additional bacterial genera in I. holocyclus and I. ricinus
samples respectively (Fig. 2). Furthermore, the MidBlocker
primer did not appear to inhibit the amplification of other
Rickettsiales closely related to CMM, as confirmed by the
identification of members of the closely related Rickettsia
and “Candidatus Neoehrlichia” genus in I. holocyclus and
I. ricinus samples amplified with the MidBlocker primer.

Bacterial pathogens in I. holocyclus and I. ricinus ticks
After sequence processing, a total of 2,441,958 and
412,130 sequences were generated for I. holocyclus and
I. ricinus ticks, respectively. Sixty-five bacterial genera
were detected in extraction reagent and no-template
controls, of which 28 were also present in at least one
tick sample (Additional file 1). These genera were all as-
sociated with ubiquitous environmental and commensal
bacteria and were subtracted from samples in order to
eliminate potential environmental contaminants from
the dataset. After removing background taxa a total of
199 and 95 bacterial genera were identified in I. holo-
cyclus and I. ricinus samples, respectively (Additional
files 2 and 3). Most bacteria identified were environ-
mental and free-living bacteria often associated with
soil and leaf-litter environments, characteristic of tick
habitats. CMM was still the most common bacterium
identified in I. holocyclus ticks (75.5 %) and the second
most common in I. ricinus ticks (70 %) after Rickettsiella
spp. However, CMM sequences comprised an average of
only 6.8 % and 4.3 % of sequences per sample for I. holo-
cyclus and I. ricinus, respectively. Six genera of medical
importance were found in tick samples including tick-
borne pathogens in the genera Anaplasma, Bartonella,
Borrelia, “Candidatus Neoehrlichia”, and Rickettsia, and
the free-living pathogens Leptospira and Clostridium.
Bartonella henselae was identified with 100 % se-

quence similarity to multiple known reference sequences
[GenBank: AJ223779, HG726042, HG969191, JN646651]
in one female I. holocyclus removed from a domestic cat.
Additionally, a second Bartonella sp. was identified from
a female I. holocyclus removed from a human. Bartonella
sequences in this sample had multiple > 99 % matches to
three Bartonella species B. coopersplainsensis, B. australis,
and B. rattaustraliani [GenBank: EU111759, DQ538394,
EU111751]; species reported to date only in native
Australian wildlife. Bartonella species were not iden-
tified in any I. ricinus ticks.
Borrelia 16S sequences were obtained from ten quest-

ing I. ricinus ticks and a single I. holocyclus tick removed
from a wild Echidna (Tachyglossidae sp.). Borrelia se-
quences derived from the I. holocyclus tick had 100
% sequence similarity, and clustered with high bootstrap
confidence (91.1 %) into a group of pathogenic relapsing
fever Borrelia species including B. duttonii, B. recur-
rentis, B. parkeri, and B. crocidurae (Fig. 3). Borrelia
16S sequences derived from one I. ricinus tick clus-
tered with high bootstrap confidence (90.2 %) with



Fig. 2 Rank abundance plots of bacterial genera identified with and without blocking. The ranked relative abundance of bacterial genera
identified in 10 I. holocyclus and 10 I. ricinus ticks when amplified with (blue lines) and without (red lines) the MidBlocker primer. X-axis represents
the number of bacterial genera identified
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the pathogenic relapsing fever Borrelia spp. B. miyamotoi
and B. lonestari, with 99.3 % and 97.7 % sequence similar-
ity respectively. Sequences derived from nine other I. rici-
nus ticks had 100 % sequence identity and clustered with
the Lyme borreliosis-causing B. burgdorferi and B. afzelii
with bootstrap values of 93.4 % and 86.8 % respectively
(Fig. 3).
Three I. ricinus ticks and 15 I. holocyclus ticks contained

sequences from the genus “Candidatus Neoehrlichia”
and all I. ricinus-derived sequences had > 98 % sequence
Fig. 3 Neighbour-joining tree of 16S V1-2 Borrelia sequences from I. holocy
1000 replicated. Parenthesises after node labels refers to the GenBank acce
similarity, and clustered with “Candidatus Neoehrlichia
mikurensis” reference sequences (Fig. 4). Ixodes holocyclus-
derived “Candidatus Neoehrlichia” sequences formed
two distinct novel clades with high bootstrap confi-
dence (94.2 % and 97.2 %) that did not group with any
“Candidatus Neoehrlichia” sequences in GenBank
(Fig. 4). Sequences within each of these novel “Candida-
tus Neoehrlichia” clades were less than 1 % dissimilar to
each other but more than 6 % dissimilar to any known
“Candidatus Neoehrlichia mikurensis” or “Candidatus
clus and I. ricinus ticks. Branch labels are bootstrap values inferred from
ssion number. * Indicates sequences from this study



Fig. 4 Neighbour-joining tree of 16S V1-2 “Candidatus Neoehrlichia” sequences from I. holocyclus and I. ricinus ticks. Branch labels are bootstrap
values inferred from 1000 replicated. Parenthesises after node labels refers to the GenBank accession number. * Indicates sequences from
this study
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Neoehrlichia lotoris” 16S sequences. One I. holocyclus
tick also contained sequences that grouped with relatively
high bootstrap confidence (75.1 %) with Anaplasma bovis
within a clade that also includes the pathogens A. platys,
A. Phagocytophilum and A. odocoilei (Fig. 4).
The genus Rickettsia was identified in five I. ricinus

ticks and six I. holocyclus ticks. In two I. ricinus ticks,
R. helvetica was identified with 100 % matches to refer-
ence sequences [GenBank: L36212, KJ740388, GQ413963]
and no other matches > 97 %. Four I. ricinus ticks were in-
fected with Rickettsia spp. that could not be identified to
the species level due to high sequence homology (> 99 %)
between many sequences including pathogenic and benign
species: one of these ticks was also co-infected with R. hel-
vetica. Rickettsia sequences in six I. holocyclus ticks were
unable to be resolved to the species level due to high
sequence homology (> 99 %) at the loci sequenced be-
tween many Rickettsia spp., including pathogenic and be-
nign species.
The genera Leptospira and Clostridium were identified

in 18 and 30 I. holocyclus ticks respectively. Leptospira
sequences derived from all ticks had 100 % sequence
similarity with Leptospira inadai [GenBank: NR115296,
AY631891, AY631887] and did not match any other
species-specific sequence > 98 %. Clostridium sequences
from 15 I. holocyclus ticks matched with the patho-
genic Clostridium histolyticum [GenBank: NR113187,
NR104889] with sequence similarity (99.4 %), however
species designation of sequences from the 10 other ticks
were unable to be resolved due to high sequence hom-
ology (> 99 %) with between many Clostridium spp.

Bacterial endosymbionts in I. holocyclus and I. ricinus ticks
In addition to CMM mentioned previously, the genus
Francisella was identified in three questing I. holocy-
clus nymphs. Francisella sequences from these ticks
matched > 98 % with Francisella-like endosymbionts
from Amblyomma, Dermacentor, and Ornithodoros ticks,
and all sequences were > 6 % dissimilar from the zoonotic
pathogen Francisella tularensis. The arthropod endosym-
biotic genus Rickettsiella was also identified in eight
I. holocyclus ticks and 15 I. ricinus ticks, however species-
specific discrimination was not possible due to high se-
quence homology (> 99 %) between many Rickettsiella



Gofton et al. Parasites & Vectors  (2015) 8:345 Page 8 of 11
species at the loci sequenced. The common arthropod
endosymbiont Wolbachia was also detected in a single
I. holocyclus tick, which matched > 94 % to W. pipientis
and other Wolbachia endosymbionts of arthropods.

Discussion
Blocking primers are a useful tool in molecular micro-
biology studies, reducing amplification of overabundant
sequences that would otherwise dominate sequencing
results [70, 81–83]. The application here of a CMM-
specific blocking primer significantly reduced the num-
ber of CMM sequences in I. ricinus and I. holocyclus
samples, allowing identification of previously occult
bacteria including other endosymbionts and potential
pathogens.
Not unexpectedly, Borrelia burgdorferi and B. afzelii

were detected in I. ricinus ticks. The prevalence of these
bacteria is high in European tick populations [84] but
these Lyme disease-causing agents were not detected
in Australian I. holocyclus ticks. However, DNA of a
relapsing fever Borrelia sp. was detected in a single
I. holocyclus tick from a wild echidna that had 100 %
identity to the known relapsing fever pathogens B. dutto-
nii, B. recurrentis, B. parkeri, and B. crocidurae. The
significance of this finding is uncertain; Borrelia-like
organisms have been suggested in Australia previously
[18, 85, 86] but this is the first report of a relapsing
fever Borrelia species in Australia, a finding that may
have public health implications. Symptoms of Borrelia
relapsing fever can be severe, inducing fevers, myalgia,
arthralgia, lethargy, petechial rash, photophobia, and
facial palsy.
The organism “Candidatus Neoehrlichia mikurensis”

is an emerging tick-borne pathogen that has been de-
tected in rodents, humans, and ticks throughout Europe
and Asia [87–90]. A second member of the genus desig-
nated “Candidatus Neoehrlichia lotoris” has also been
described as a pathogen in the American racoon,
Procyon lotor [91]. “Candidatus N. mikurensis” causes
significant illness in immunocompromised humans in-
cluding, but not limited to, anaemia, deep vein throm-
bosis, fever, diarrhoea, joint and muscle pain, pulmonary
embolism, and arterial aneurysm [87–89]. Based on the
partial 16S sequences reported here, the “Candidatus
Neoehrlichia” spp. from I. holocyclus ticks are closely re-
lated to, but distinct from, “Candidatus N. mikurensis”
and “Candidatus N. lotoris”, and may therefore be a
novel species. In fact, this is the first description of the
“Candidatus Neoehrlichia” genus in Australia; the med-
ical significance of this finding warrants further research
to refine its phylogenetic position and investigate its
pathogenicity, if any, in humans. Furthermore, the detec-
tion of an Anaplasma sp. in one I. holocyclus tick is also
of significance, as only two species of Anaplasma have
previously been detected in Australia; Anaplasma mar-
ginale in Rhipicephalus microplus ticks [92], and Ana-
plasma platys in R. sanguineus ticks in central and
northern Australia [93].
Detection of Leptospira inadai during this study may

explain the observation over twenty years ago of
spirochaete-like objects (SLOs) identified by dark field
microscopy of various tick species including I. holocyclus
[17]. Although these SLOs were dismissed as aberrant
artifacts by the authors, it is noteworthy that the SLOs
shown in Figs. 1 and 2 from Russell et al. [17] bear a
strong resemblance to various Leptospira spp., including
L. inadai. Further work isolating and imaging L. inadai
from I. holocyclus is required to confirm this possibility.
Recently it was proposed that Leptospira spp. may also
be tick-transmitted due to their high prevalence in
I. ricinus ticks [94]. Leptospira inadai is pathogenic in
laboratory rodents and L. inadai serovar Lyme was iso-
lated from a skin biopsy of a human Lyme disease pa-
tient in North America [95]. Although in that case
L. inadai was not thought to be associated with the pa-
tient’s symptoms, its high prevalence in I. holocyclus,
and the high prevalence of Leptospira spp. in I. ricinus
warrants further investigation.
Francisella-like endosymbionts are well described in

Amblyomma and Dermacentor ticks, and have recently
been detected in I. ricinus ticks [28, 29, 96]. In this study
we report the first instance of a Francisella sp. in the
Australian paralysis tick I. holocyclus. Many Francisella-
like endosymbionts infect tick species that are also cap-
able of transmitting the zoonotic pathogen Francisella
tularensis, making accurate identification by conven-
tional PCR methodologies challenging due to false
positive results [97]. The methodology presented here
accurately identified non-tularaemia-causing Francisella
spp. endosymbiont 16S sequences that were 6 % dissimi-
lar from F. tularensis reference sequences, indicating
that NGS and bioinformatics methodologies may prove
useful in clinical diagnostic settings.

Conclusions
Next-generation 16S bacterial profiling is an excellent
tool for the simultaneous identification of many bacterial
species in arthropods. However, bacterial endosymbionts
such as CMM, which are common and abundant in
many arthropod vectors such as ticks and mosquitoes,
can limit the effectiveness of this method by biasing
PCR amplification of less abundant sequences. Here we
have shown that a CMM-specific blocking primer sig-
nificantly increases the amplification and detection of
less abundant bacteria including pathogens. Furthermore
our CMM-blocking primer is applicable to a range of ar-
thropods that harbour CMM, and can be applied to a
wide variety of disease vectors.
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In this study we identified novel candidate pathogens
that warrant further scrutiny in the context of investigat-
ing so-called “Lyme-like disease” in Australia. Borrelia
relapsing fever and “Candidatus Neoehrlichia” patho-
gens are being identified in new geographic regions
throughout the world and their medical importance is
well recognised. The aetiological agent of Australian
“Lyme-like” illness has been a source of unresolved de-
bate for many years and the discovery of these organ-
isms in Australian I. holocyclus ticks may provide
insights into this medical conundrum. Given the wide-
spread presence of endosymbionts in arthropod vectors
of disease, together with the fact that such symbionts
may be resident in high numbers, our findings also high-
light the potential for discovering important novel
arthropod-associated bacteria that are in relatively low
abundance.
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