Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from Parasites & Vectors and BioMed Central.

Open Access Research

Impact of cyfluthrin (Solfac EW050) impregnated bed nets on malaria transmission in the city of Mbandjock : lessons for the nationwide distribution of long-lasting insecticidal nets (LLINs) in Cameroon

Christophe Antonio-Nkondjio123*, Maurice Demanou4, Josiane Etang15 and Bernard Bouchite6

Author Affiliations

1 Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon

2 Vector group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK

3 Faculty of Health Sciences University of Bamenda, P.O. Box 39, Bambili, Cameroon

4 Laboratoire des Arbovirus, Service de Virologie Centre Pasteur Cameroun BP 1274 Yaoundé Cameroun, membre du Réseau International des Instituts Pasteur, Yàounde, Cameroon

5 Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon

6 Institut de Recherche pour le Développement (IRD), UR 016, 911, avenue Agropolis, P.O. Box 64501, 34394, Montpellier cedex 5, France

For all author emails, please log on.

Parasites & Vectors 2013, 6:10  doi:10.1186/1756-3305-6-10

Published: 11 January 2013

Abstract

Background

Insecticide treated materials remain the mainstay for malaria prevention. The current study reports on the entomological impact of cyfluthrin impregnated bed nets on malaria transmission in Mbandjock, a semi urban locality in southern Cameroon. Several findings pertaining to the recent distribution of LLINs across Cameroon are discussed.

Methods

Malaria transmission and vector bionomics were monitored before and after impregnated net coverage. Bed nets were distributed in Mbandjock, whereas the locality of Nkoteng was free of bed nets during the entire study period. January to June 1997 represented the period before bed net coverage and September 1997 to September 1998 was the period after bed net coverage. Adult mosquitoes were collected by human landing catches. Mosquito genus and species were identified with morphological and molecular diagnostic tools. Anopheline salivary glands and ovaries were dissected to determine female infectious status and parity rates respectively.

Results

A total of 6959 anophelines corresponding to 6029 in Mbandjock and 930 in Nkoteng were collected in the course of the study. Seven species were recorded in both cities : Anopheles coustani, An. funestus, An. gambiae sl, An. moucheti, An. ziemanni, An. nili and An. paludis. An. gambiae s.l. (>95% An. gambiae S molecular form) was the most abundant species representing 75.6% and 86.6% of the total anophelines caught in Mbandjock before and after bed net coverage respectively. The human biting rate (HBR) in Mbandjock decreased from 17 bites/human/night before bed net coverage to less than 4 bites/human/night during the first 7 months following impregnated bed net coverage. A significant decrease of mosquito parity rate was recorded when comparing the period before (52%) and after (46.5%) bed net distribution. The average infection rate of malaria vectors significantly decreased from 5.3% before to 1.8% after bed net coverage (p < 0.0001). The entomological inoculation rate in Mbandjock was reduced by 74% varying from 124.1 infected bites/human/year before bed net distribution, to 32.5 infected bites/human/year after bed net coverage. All entomological indexes were relatively stable in Nkoteng and no reduction of malaria transmission was recorded in this locality.

Conclusion

The study confirms the effectiveness of cyfluthrin impregnated nets in reducing malaria transmission. Lessons from this study could be essential to draw guidelines for the management of the recent nationwide distribution of LLINs across Cameroon in 2011.

Keywords:
Cyfluthrin; Impregnated nets; Malaria; Transmission; Anopheles; Cameroon